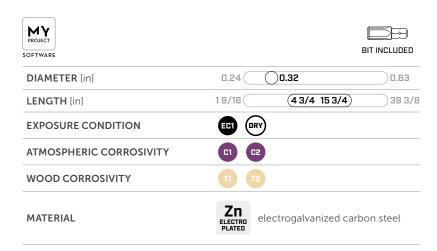
TBS MAX

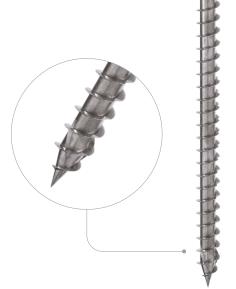
XL FLANGE HEAD SCREW

FLANGE HEAD OF INCREASED SIZE

The oversized head provides excellent head pull-through strength and joint tightening capacity.

LONGER THREAD


The oversized thread of the TBS MAX guarantees excellent withdrawal resistance and clamping strength of the joint.


RIBBED FLOORS

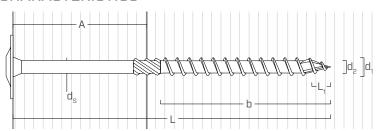
Thanks to its large head and oversized thread, it is the ideal screw in the production of ribbed floors (Rippendecke). Used in conjunction with SHARP METAL, it optimises the number of fasteners by avoiding the use of presses when gluing timber elements together.

3 THORNS TIP

Thanks to the 3 THORNS tip, minimum installation distances are reduced. More screws can be used in less space and larger screws in smaller elements. Costs and time for project implementation are reduced.

FIELDS OF USE

- timber based panels
- fibreboard and MDF panels
- SIP and ribbed panels.
- solid timber and glulam
- CLT and LVL
- high density woods


CODES AND DIMENSIONS

d_1	CODE	L		b		Α	pcs
[mm] [in]		[mm]	[in]	[mm]	[in]	[in]	
	TBSMAX8120	120	4 3/4	100	4	3/4	50
8	TBSMAX8160	160	6 1/4	120	4 3/4	1 1/2	50
0.32	TBSMAX8180	180	7 1/8	120	4 3/4	2 1/4	50
TX 40	TBSMAX8200	200	8	120	4 3/4	3	50
	TBSMAX8220	220	8 5/8	120	4 3/4	3 3/4	50

d_1	CODE		L I		b	Α	pcs
[mm] [in]		[mm]	[in]	[mm]	[in]	[in]	
	TBSMAX8240	240	9 1/2	120	4 3/4	4 1/2	50
8	TBSMAX8280	280	11	120	4 3/4	6 1/4	50
0.32	TBSMAX8320	320	12 5/8	120	4 3/4	7 3/4	50
TX 40	TBSMAX8360	360	14 1/4	120	4 3/4	9 1/4	50
	TBSMAX8400	400	15 3/4	120	4 3/4	11	50

GEOMETRY AND MECHANICAL CHARACTERISTICS

GEOMETRY

Nominal diameter	d_1	[in] ⁽¹⁾	0.32
Outer thread diameter	d₁	[mm]	8
Outer thread diameter	u ₁	[in]	0.315
Head diameter	d _K	[in]	0.965
Root diameter	d ₂	[in]	0.213
Shank diameter	d_S	[in]	0.228
Tip Length	L _t	[in]	0.315
Pre-drilling hole diameter ⁽²⁾	$d_{V,G \le 0.55}$	[in]	13/64
Pre-drilling hole diameter ⁽³⁾	d _{V,G>0.55}	[in]	15/64

⁽¹⁾ The nominal diameter of the screw is converted into imperial units and rounded up to the nearest decimal point.

MECHANICAL PARAMETERS

Nominal diameter	C	1	[in]	0.32
Tensile strength (allowable)	f	tens	[lbf]	2040
Bending yield strength (specified)	F	y,b	[psi]	180000
Nominal diameter	d ₁	[in]		0.32
			G = 0.35	172
Mitheduceral (desires colors)	147	[]]= { /: -= 1	G = 0.42	199
Withdrawal (design value)	W ₉₀	[lbf/in]	G = 0.49	225
			G = 0.55	247
minimum embedded length		[in]		1 7/8
			G = 0.35	421
Lload pull through (docign value)	14/	[lbf]	G = 0.42	484
Head pull-through (design value)) W _H	[lbf]	G = 0.49	545
			G = 0.55	594
minimum side member thickness		[in]		1

TBS MAX FOR RIB TIMBER

With its increased thread (4 3/4") and enlarged head (0.965 inch), the TBS MAX guarantees excellent grip and superb joint closure. Ideal for the production of ribbed floors (Rippendecke), optimising the number of fastenings.

SHARP METAL

Ideal in combination with the SHARP MET-AL system, as the enlarged head guarantees excellent joint tightening, making the use of presses unnecessary when gluing wooden elements together.

 $^{^{(2)}} Pre$ -drilling applies to timber with G<0.55 (optional). $^{(3)} Pre$ -drilling applies to timber with G>0.55 (required).

MINIMUM DISTANCES FOR SHEAR LOADS | TIMBER

screws inserted WITHOUT pre-drilled hole

 $G \leq 0.48\,$

F	a = 90°
---	---------

al.	[in]		0.32
d ₁	[mm]		8
a ₁	[in]	15·d	3 1/8
a ₂	[in]	5·d	1 9/16
a _{3,t}	[in]	15·d	4 3/4
a _{3,c}	[in]	10 ⋅d	3 1/8
a _{4,t}	[in]	10 ⋅d	3 1/8
a _{4,c}	[in]	5·d	1 9/16

	0.32	
	8	
10·d	1 9/16	
5·d	1 9/16	
15·d	4 3/4	
10·d	3 1/8	
10·d	3 1/8	
5·d	1 9/16	

screws inserted WITHOUT pre-drilled hole

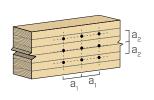
 $0.48 < G \le 0.50$

d	[in]		0.32
d ₁	[mm]		8
a ₁	[in]	15·d	4 3/4
a ₂	[in]	5·d	1 9/16
a _{3,t}	[in]	15·d	4 3/4
a _{3,c}	[in]	10 ⋅d	3 1/8
a _{4,t}	[in]	10 ⋅d	3 1/8
a _{4,c}	[in]	5·d	1 9/16

	0.32	
	8	
10·d	2 3/16	
5·d	1 9/16	
15·d	4 3/4	
10·d	3 1/8	
10·d	3 1/8	
5·d	1 9/16	

screws inserted WITHOUT pre-drilled hole

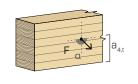
G > 0.50



a.	[in]		0.32
d ₁	[mm]		8
a ₁	[in]	15 ⋅d	4 3/4
a ₂	[in]	7·d	2 3/16
a _{3,t}	[in]	20·d	6 1/4
a _{3,c}	[in]	15 ⋅d	4 3/4
a _{4,t}	[in]	12·d	3 3/4
a _{4,c}	[in]	7·d	2 3/16

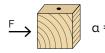
	0.32	
	8	
10·d	3 1/8	
7-d	2 3/16	
20·d	6 1/4	
15·d	4 3/4	
12·d	3 3/4	
7-d	2 3/16	

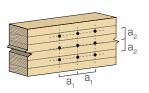
 α = load-to-grain angle d = d₁ = nominal diameter of the screw


stressed end -90° < α < 90°

unloaded end 90° < α < 270°

stressed edge 0° < α < 180°

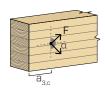

unload edge 180° < α < 360°

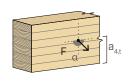


4	[in]		0.32
d ₁	[mm]		8
a ₁	[in]	10·d	3 1/8
a ₂	[in]	4·d	1 1/4
a _{3,t}	[in]	12·d	3 3/4
a _{3,c}	[in]	7∙d	2 3/16
a _{4,t}	[in]	7∙d	2 3/16
a _{4,c}	[in]	3·d	15/16

	0.32	
	8	
5·d	1 9/16	
4·d	1 1/4	
12·d	3 3/4	
7·d	2 3/16	
7·d	2 3/16	
3·d	15/16	

 α = load-to-grain angle


 $d = d_1 = nominal diameter of the screw$



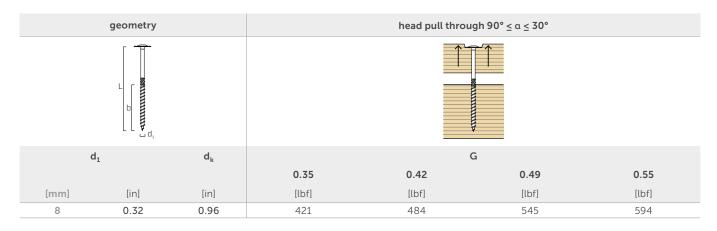
unloaded end 90° < α < 270°

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

NOTES

- Values in blue are from Table 10 of ESR-4645 (REDUCED CONNECTION GEOMETRY REQUIREMENTS BASED ON TESTING);
- The minimum spacing and distances comply with Table 8 of ESR-4645, where d refers to the nominal diameter of the screw;
- Wood member stresses must be checked in accordance with the corresponding Sections of the NDS; end distances, edge distances and fastener spacing may need to be increased accordingly.


■ REFERENCE LATERAL DESIGN VALUES (Z) | WOOD-TO-WOOD

	Z _{II}				Z _{⊥/II}				z_{\perp}							
	←															
d	L		b	Α	G				(G		G				
d ₁	,	-	ь	D A	0.35	0.42	0.49	0.55	0.35	0.42	0.49	0.55	0.35	0.42	0.49	0.55
[mm] [in]	[mm]	[in]	[in]	[in]	[lbf]	[lbf]	[lbf]	[lbf]	[lbf]	[lbf]	[lbf]	[lbf]	[lbf]	[lbf]	[lbf]	[lbf]
	120	4 3/4	4	3/4	146	174	202	228	117	139	162	182	117	139	162	182
8	160	6 1/4	4 3/4	1 1/2	160	202	248	292	128	161	198	233	128	161	198	233
0.32	180	7 1/8	4 3/4	2 1/4	191	245	282	313	153	196	225	251	153	196	225	251
	200-400	8-15 3/4	4 3/4	≥ 3	207	245	282	313	165	196	225	251	165	196	225	251

■ THREAD WITHDRAWAL (W) | WOOD

	g€	eometry		threa	d withd	rawal α	= 90°	threa	ad withd	rawal α	= 45°	thread withdrawal α = 0°					
d ₁	d ₁ L		b	G 0.35 0.42 0.49 0.55				G 0.35 0.42 0.49 0.55				G 0.35 0.42 0.49 0.55					
[mm] [in]	[mm]	[in]	[in]	[lbf]	[lbf]	[lbf]	[lbf]	[lbf]	[lbf]	[lbf]	[lbf]	[lbf]	[lbf]	[lbf]	[lbf]		
	120	4 3/4	4	623	721	815	895	567	656	742	814	187	216	244	268		
	160	6 1/4	4 3/4	758	877	992	1089	690	799	903	991	228	263	298	327		
	180	7 1/8	4 3/4	758	877	992	1089	690	799	903	991	228	263	298	327		
	200	8	4 3/4	758	877	992	1089	690	799	903	991	228	263	298	327		
8	220	8 5/8	4 3/4	758	877	992	1089	690	799	903	991	228	263	298	327		
0.32	240	9 1/2	4 3/4	758	877	992	1089	690	799	903	991	228	263	298	327		
	280	11	4 3/4	758	877	992	1089	690	799	903	991	228	263	298	327		
	320	12 5/8	4 3/4	758	877	992	1089	690	799	903	991	228	263	298	327		
	360	14 1/4	4 3/4	758	877	992	1089	690	799	903	991	228	263	298	327		
	400	15 3/4	4 3/4	758	877	992	1089	690	799	903	991	228	263	298	327		

■ HEAD PULL-THROUGH (W_H) | WOOD

NOTES and GENERAL PRINCIPLES on page 112.

CLT | WALL-TO-WALL | FLOOR-TO-WALL

							SHE		TENSION SPACING												
		geom	etry		wall-to	o-wall	floor-t orienta		floor-t orienta		withdrawal / head pull-through	faste in a r									
А	A			Z _m		$z_{\perp} \longleftrightarrow z_{\perp}$		Z _m L		↑ ↑	\$1										
	side member thickness (wall/floor) = A		suggested screw										Z_{\perp}	$\mathbf{Z}_{m\perp}$	Z_{\perp}	Z _{II}	$\mathbf{Z}_{m\perp}$	${\sf Z_{s\perp}}$	W(*)	minimum	typical
	[mm]	[in]	CODE		[lbf]	[lbf]	[lbf]	[lbf]	[lbf]	[lbf]	[lbf]	[in]	[in]								
	60	2 3/8	TBSMAX8180		131	131	131	164	131	131	484	3 1/8	6								
3 PLY	79	3 1/8	TBSMAX8200	or longer	131	131	131	164	131	131	484	3 1/8	6								
3 P	105	4 1/8	TBSMAX8240	or lo	131	131	131	164	131	131	484	3 1/8	6								
	120	4 3/4	TBSMAX8240		131	131	131	164	131	131	484	3 1/8	6								
	100	3 15/16	TBSMAX8220		131	131	131	164	131	131	484	3 1/8	6								
PLY	140	5 1/2	TBSMAX8280		131	131	131	164	131	131	484	3 1/8	6								
5 F	175	6 7/8	TBSMAX8320	or lon	131	131	131	164	131	131	484	3 1/8	6								
	200	7 7/8	TBSMAX8320		131	131	131	164	131	131	484	3 1/8	6								
	140	5 1/2	TBSMAX8280		131	131	131	164	131	131	484	3 1/8	6								
7 PLY	191	7 1/2	TBSMAX8320	nger	131	131	131	164	131	131	484	3 1/8	6								
7 P	244	9 5/8	TBSMAX8400	or lon	131	131	131	164	131	131	484	3 1/8	6								
	280	11	TBSMAX8400		131	131	131	164	131	131	484	3 1/8	6								

^(*) Minimum between head pull-through and withdrawal resistance

■ CLT | FLOOR-TO-BEAM

							SHE	EAR				TENSION	SPA	CING
	geometry			floor-to orient		floor-to orient	o-beam ation 2	lumb	floor-to-double lumber 2" orientation 1		-double er 2" ation 2	withdrawal / head pull-through	fastener in a row	
A	A			Z ₁₁		Z _{S.L}		Z ₁		Z _{S.L}		↑ ↑	S	1
	side member thickness (wall/floor) = A screw		Z_\perp	Z _{II}	Z _m ⊥	$Z_{s\perp}$	Z_\perp	Z _{II}	Z _{m⊥}	$Z_{s\perp}$	W(*)	minimum	typical	
	[mm]	[in]	CODE	[lbf]	[lbf]	[lbf]	[lbf]	[lbf]	[lbf]	[lbf]	[lbf]	[lbf]	[in]	[in]
	100	3 15/16	TBSMAX8200	196	245	131	196	196	245	131	196	484	3 1/8	6
		3 13/10	TBSMAX8220	196	245	131	196	-	-	-	-	484	3 1/8	6
	140	5 1/2	TBSMAX8240	196	245	131	196	196	245	131	196	484	3 1/8	6
PLY	140	3 1/2	TBSMAX8280	196	245	131	196	-	-	-	-	484	3 1/8	6
5	175	6 7/8	TBSMAX8240	196	245	131	196	196	245	131	196	484	3 1/8	6
		0 7/0	TBSMAX8320	196	245	131	196	-	-	-	-	484	3 1/8	6
	200	7 7/8	TBSMAX8280	196	245	131	196	196	245	131	196	484	3 1/8	6
	200	7 7/0	TBSMAX8320	196	245	131	196	-	-	-	-	484	3 1/8	6
	140	5 1/2	TBSMAX8240	196	245	131	196	196	245	131	196	484	3 1/8	6
	140	3 1/2	TBSMAX8280	196	245	131	196	-	-	-	-	484	3 1/8	6
	191	7 1/2	TBSMAX8280	196	245	131	196	196	245	131	196	484	3 1/8	6
PLY	171	7 1/2	TBSMAX8320	196	245	131	196	-	-	-	-	484	3 1/8	6
7.	244	9 5/8	TBSMAX8320	196	245	131	196	196	245	131	196	484	3 1/8	6
	277	9 3/6	TBSMAX8400	196	245	131	196	-	-	-	-	484	3 1/8	6
	280	11	TBSMAX8360	196	245	131	196	196	245	131	196	484	3 1/8	6
	200	11	TBSMAX8400	196	245	131	196	-	-	-	-	484	3 1/8	6
	180	7 1/16	TBSMAX8240	196	245	131	196	196	245	131	196	484	3 1/8	6
PLY	100	, 1/10	TBSMAX8320	196	245	131	196	-	-	-	-	484	3 1/8	6
9 6	267	10 1/2	TBSMAX8320	185	231	124	185	185	231	124	185	484	3 1/8	6
	207	10 1/2	TBSMAX8400	196	245	131	196	-	-	-	-	484	3 1/8	6

^(*)Minumum between head pull-through and withdrawal resistance

CLT | SPLINE JOINT

						SHE	EAR		SPACING		
			geometry		spline orient	e joint ation 1	spline orienta		fastener in a row		
Α	A L				z_{\parallel}		Z_{\perp}		\$1		
	panel thickness (wall/floor) = A		spline thickness = t _s	suggested screw	Z _{II}	Z_{\perp}	Z _{II}	z_{\perp}	minimum	typical	
	[mm]	[in]	[in]	CODE	[lbf]	[lbf]	[lbf]	[lbf]	[in]	[in]	
	130	5 1/8	3/4	TBSMAX8120	173	139	173	139	3 1/8	4	
			1	TBSMAX8120	179	143	179	143	3 1/8	4	
5 PLY	140	5 1/2	3/4	TBSMAX8120	173	139	173	139	3 1/8	4	
5 F	140	3 1/2	1	TBSMAX8120	179	143	179	143	3 1/8	4	
	175	6 7/8	3/4	TBSMAX8120	173	139	173	139	3 1/8	4	
	1/3	0 7/0	1	TBSMAX8160	179	143	179	143	3 1/8	4	
	191	7 1/2	3/4	TBSMAX8120	173	139	173	139	3 1/8	4	
	191	/ 1/2	1	TBSMAX8160	179	143	179	143	3 1/8	4	
7 PLY	220	8 5/8	3/4	TBSMAX8160	173	139	173	139	3 1/8	4	
7.6	220	0 3/0	1	TBSMAX8160	179	143	179	143	3 1/8	4	
	244	9 5/8	3/4	TBSMAX8180	173	139	173	139	3 1/8	4	
		3 3/0	1	TBSMAX8180	179	143	179	143	3 1/8	4	

CLT | HALF LAP

	•				SHE	EAR		SPACING		
		geometr	у		f lap ation 1		flap ation 2	fastener in a row		
F	A [Z ₁	÷	Z ₁₁	→ →	S ₁		
	panel thickness (wall/floor) = A		suggested screw	${\sf Z}_{\perp}$	Z_{II}	${\sf Z}_{\perp}$	Z _{II}	minimum	typical	
	[mm]	[in]	CODE	[lbf]	[lbf]	[lbf]	[lbf]	[in]	[in]	
	140	5 1/2	TBSMAX8120	178	222	178	222	3 1/8	6	
5 PLY	175	6 7/8	TBSMAX8160	196	245	196	245	3 1/8	6	
۵,	200	7 7/8	TBSMAX8180	196	245	196	245	3 1/8	6	
	140	5 1/2	TBSMAX8120	178	222	178	222	3 1/8	6	
7 PLY	191	7 1/2	TBSMAX8180	196	245	196	245	3 1/8	6	
7 P	244	9 5/8	TBSMAX8220	196	245	196	245	3 1/8	6	
	280	11	TBSMAX8240	196	245	196	245	3 1/8	6	
	180	7 1/16	TBSMAX8160	196	245	196	245	3 1/8	6	
PLY	267	10 1/2	TBSMAX8240	196	245	196	245	3 1/8	6	
9 P	314	12 3/8	TBSMAX8280	196	245	196	245	3 1/8	6	
	360	14 3/16	TBSMAX8320	196	245	196	245	3 1/8	6	

NOTES and GENERAL PRINCIPLES on page 112.

GENERAL PRINCIPLES

- Tabulated values comply with NATIONAL DESIGN SPECIFICATION FOR WOOD CONSTRUCTION in accordance with ESR-4645.
- To determine allowable loads for use with ASD, design loads for use with LRFD or both, tabulated values must be multiplied by all adjustment factors included in the NDS for dowel-type fasteners.
- As part of the connection design, the structural wood members, the steel plates must be sized and verified in accordance with the corresponding . Section of the NDS and must be done separately by the designer
- Connections with multiple screws must be designed in accordance with the corresponding Sections of the NDS and ESR-4645.
- TBS MAX screws must be positioned in accordance with the minimum distances.
- In case of combined axial and shear forces, the designer shall refer to the Hankinson formula, as specified in section 12.4.1 of the NDS, to evaluate the load-bearing capacity.

REFERENCE LATERAL DESIGN VALUES

- Tabulated values are determined from the yield model equations in the corresponding Section of the NDS.
- Unless otherwise noted, the threaded part of the screw is fully inserted in the main member
- The screw penetration into the main member is minimum 6 times the outer thread diameter unless otherwise noted.
- The reference lateral design values may be determined for other connection configurations in accordance with the corresponding Section of NDS and
- The reference lateral design values are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained.

WOOD-TO-WOOD

- The wood main member thickness must be greater than the screw length minus the thickness of the wood side member
- The tabulated lateral design values are based on both wood members having the same specific gravity G

REFERENCE WITHDRAWAL DESIGN VALUES

- The reference withdrawal design values (W_{ref}) expressed in pounds-force per inch of thread penetration into the main member for screws installed at an angle of 90° to the grain can be found in the ESR-4645.
- The values for screws installed at an angle α to the grain are determined by multiplying the reference withdrawal design values with the effective thread penetration Leff of the screw in the wood member and with the factor ka

$$W_{\alpha} = W_{ref} \cdot k_{\alpha} \cdot L_{eff}$$

Where:

- W_{rof} is the reference withdrawal design value for screws installed at an angle of 90° to the grain, as shown in the table on the left;
- kg factor is calculated as:

$$k_{\alpha} = \begin{cases} 35^{\circ} < \alpha \le 90^{\circ} & \frac{1}{1.2 \cdot \cos^{2}(\alpha) + \sin^{2}(\alpha)} \\ 0^{\circ} \le \alpha \le 35^{\circ} & 0.3 + 0.7 \cdot \frac{\alpha}{45} \end{cases}$$

- α is the angle between the grain direction and screw axis.

Tabulated values at page 108 are valid for $L_{\rm eff}$ equal to the screw thread length b minus the tip length $L_{\rm t}$ and $k_{\rm q}=1$ for α =90°, $k_{\rm q}=0.91$ for α = 45°, $k_{\alpha} = 0.3$ for $\alpha = 0^{\circ}$.

- The minimum embedded thread length is 6 times the outer thread diameter for screws installed at 90° to the grain, unless otherwise noted.
- The minimum embedded thread length for screws installed at an angle $0^{\circ} \leq \alpha < 90^{\circ}$ to the grain is 8 times the outer thread diameter, unless otherwise noted.
- At least four screws must be used in a connection with screws installed in the wood member with an angle between the grain direction and screw
- The reference withdrawal design values must be inferior to f_{tens} of the screw.

REFERENCE HEAD PULL-THROUGH DESIGN VALUES

While designing a connection the head pull-through values must be compared with the tensile resistance of the screw and, if necessary, thread withdrawal. The lower value is the governing one.

CONNECTIONS

GENERAL NOTES

- Designed connections must respect all requirements on general principles and minimum distances
- · Calculations comply with the NDS in accordance with ESR 4645.
- Tabulated values, that are referred to a single fastener, are valid for Allowable Stress Design (ASD) considering a standard loading ($C_D = 1.0$).
- Timber element specific gravity is considered as G = 0.42.
- Z_{II}: Force-to-grain angle in the shear plane is considered as 0°.
- Z₁: Force-to-grain angle in the shear plane is considered as 90°.
- Z_{m} : Force-to-grain angle in the shear plane is considered as 0° for side member and as 90° for main member.
- $Z_{\text{s}\perp}$: Force-to-grain angle in the shear plane is considered as 90° for side member and as 0° for main member.
- · For the connectors inserted in the panel's face, it has been considered the same grain direction as the layer in the shear plane. For the connectors inserted in the panel's narrow edge, it has been considered the same grain direction as the layer in which the connector is installed.
- For lateral design values the force-to-fastener angle is always considered 90°.
- Typical fastener spacings are declared considering a generic load condition: spacings should be verified and defined according to the real load conditions.

CLT | WALL-TO-WALL | FLOOR-TO-WALL

- The main grain direction of the CLT wall panel is always considered as vertical.
- The main grain direction of the CLT floor panel is considered both parallel and perpendicular to the wall plane.
- The threaded part of the screw has been always considered inserted in the central layer of the CLT panel.
- The withdrawal capacity has been considered as the minimum between thread withdrawal, head-pull through and tensile strength of the screw.
- According to NDS, an end grain coefficient C_{eg} = 0.67 is considered for the lateral resistance calculation due to fastener in narrow edge of CLT.

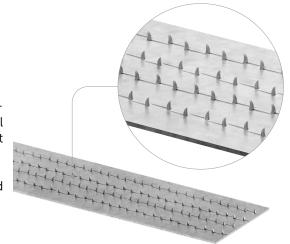
CLT | FLOOR-TO-WOOD BEAM

- The main grain direction of the CLT floor panel is considered both parallel and perpendicular to the beam's axis.
- · The threaded part of the screw has been always considered inserted in the central layer of the CLT panel.
- The withdrawal capacity has been considered as the minimum between thread withdrawal, head-pull through and tensile strength of the screw
- According to NDS, an end grain coefficient $C_{\mbox{eg}}$ =0.67 is considered for the lateral resistance calculation due to fastener in narrow edge of CLT.
- Beam element can be considered both solid wood or glulam
- · Double lumber is considered as two coupled element of 2 inches thick
- The width of the beams must comply with the minimum distance requirements.
- The proposed screw's length does not exceed the total thickness of the connection. In configurations with no declared value (-) the fastener exceeds the main member depth.

SPLINE JOINT

- Spline thickness is considered to be thinner than the top CLT layer.
- For Root Diameter d₂>0.25 inch, the bearing strength of the spline is conservatively considered as 3350 psi according to NDS.
- The main grain direction of the CLT floor panel is considered both parallel and perpendicular to the spline's direction.
- The width of the spline and consequent machining on CLT panel must comply with the minimum distance requirements

HAIFIAP


- The main grain direction of the CLT floor panel is considered both parallel and perpendicular to the machining's direction.
- The width of half-lap machining on CLT panel must comply with the minimum
- · The proposed screw's length does not exceed the total thickness of the connection.

A breakthrough in fast, reliable, glue-free timber connections

The SHARP METAL hooked plate revolutionises timber-to-timber connections with a simple but incredibly effective system. The multitude of small hooks distributed over the two surfaces of the plate allows for a secure joint that can be easily removed when necessary.

Ideal for ribbed or formwork floors: thanks to the SHARP METAL hooks and TBS MAX tightening, there is no need for glues, adhesives or presses.

Download the data sheet

